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colSums2 colSums of a matrix

Description

colSums of a matrix

Usage

colSums2(Mat)

Arguments

Mat a matrix.

Value

colSums(Mat)

constraint Sum-to-zero constraint

Description

Applies the sum-to-zero constraints to design and penalty matrices.

Usage

constraint(X, S, Z = NULL)

Arguments

X A design matrix

S A penalty matrix or a list of penalty matrices

Z A list of sum-to-zero constraint matrices; default is NULL
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Value

List of objects with the following items:

X Design matrix

S Penalty matrix or list of penalty matrices

Z List of sum-to-zero constraint matrices

Examples

library(survPen)

set.seed(15)

X <- matrix(rnorm(10*3),nrow=10,ncol=3)
S <- matrix(rnorm(3*3),nrow=3,ncol=3) ; S <- 0.5*( S + t(S))

# applying sum-to-zero constraint to a desgin matrix and a penalty matrix
constr <- constraint(X,S)

cor.var Implementation of the corrected variance Vc

Description

Takes the model at convergence and calculates the variance matrix corrected for smoothing param-
eter uncertainty

Usage

cor.var(model)

Arguments

model survPen object, see survPen.fit for details

Value

survPen object with corrected variance Vc
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crs Bases for cubic regression splines (equivalent to "cr" in mgcv)

Description

Builds the design matrix and the penalty matrix for cubic regression splines.

Usage

crs(x, knots = NULL, df = 10, intercept = TRUE)

Arguments

x Numeric vector

knots Numeric vectors that specifies the knots of the splines (including boundaries);
default is NULL

df numeric value that indicates the number of knots desired (or degrees of freedom)
if knots=NULL; default is 10

intercept if FALSE, the intercept is excluded from the basis; default is TRUE

Details

See package mgcv and section 4.1.2 of Wood (2006) for more details about this basis

Value

List of three elements

bs design matrix

pen penalty matrix

knots vector of knots (specified or calculated from df)

References

Wood, S. N. (2006), Generalized additive models: an introduction with R. London: Chapman &
Hall/CRC.

Examples

x <- seq(1,10,length=100)
# natural cubic spline with 3 knots
crs(x,knots=c(1,5,10))
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crs.FP Penalty matrix constructor for cubic regression splines

Description

constructs the penalty matrix associated with cubic regression splines basis. This function is called
inside crs.

Usage

crs.FP(knots, h)

Arguments

knots Numeric vectors that specifies the knots of the splines (including boundaries)

h vector of knots differences (corresponds to diff(sort(knots)))

Value

List of two elements:

F.mat matrix used in function crs for basis construction

P.mat penalty matrix

Examples

library(survPen)

# construction of the penalty matrix using a sequence of knots
knots <- c(0,0.25,0.5,0.75,1)
diff.knots <- diff(knots)

crs.FP(knots,diff.knots)

datCancer Patients diagnosed with cervical cancer

Description

A simulated dataset containing the follow-up times of 2000 patients diagnosed with cervical cancer
between 1990 and 2010. End of follow-up is June 30th 2013. The variables are as follows:

• begin. beginning of follow-up. For illustration purposes about left truncation only (0–1)

• fu. follow-up time in years (0–5)

• age. age at diagnosis in years, from 21.39 to 99.33



deriv_R 7

• yod. decimal year of diagnosis, from 1990.023 to 2010.999

• dead. censoring indicator (1 for dead, 0 for censored)

• rate. expected mortality rate (from overall mortality of the general population) (0–0.38)

Usage

data(datCancer)

Format

A data frame with 2000 rows and 6 variables

deriv_R Derivative of a Choleski factor

Description

Derivative of a Choleski factor

Usage

deriv_R(deriv_Vp, p, R1)

Arguments

deriv_Vp derivatives of the Bayesian covariance matrix wrt rho (log smoothing parame-
ters).

p number of regression parameters

R1 Choleski factor of Vp

Value

a list containing the derivatives of R1 wrt rho (log smoothing parameters)
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design.matrix Design matrix for the model needed in Gauss-Legendre quadrature

Description

Builds the design matrix for the whole model when the sum-to-zero constraints are specified. The
function is called inside model.cons for Gauss-Legendre quadrature.

Usage

design.matrix(
formula,
data.spec,
t1.name,
Z.smf,
Z.tensor,
Z.tint,
list.smf,
list.tensor,
list.tint,
list.rd

)

Arguments

formula formula object identifying the model

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated

t1.name name of the vector of follow-up times

Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf
splines

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor
splines

Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint
splines

list.smf List of all smf.smooth.spec objects contained in the model

list.tensor List of all tensor.smooth.spec objects contained in the model

list.tint List of all tint.smooth.spec objects contained in the model

list.rd List of all rd.smooth.spec objects contained in the model

Value

design matrix for the model
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Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Retrieving the sum-to-zero constraint matrices and the list of knots
Z.smf <- model.c$Z.smf ; list.smf <- model.c$list.smf

# Calculating the design matrix
design.M <- design.matrix(form,data.spec=data,t1.name="time",Z.smf=Z.smf,list.smf=list.smf,
Z.tensor=NULL,Z.tint=NULL,list.tensor=NULL,list.tint=NULL,list.rd=NULL)

grad_rho Gradient vector of LCV and LAML wrt rho (log smoothing parame-
ters)

Description

Gradient vector of LCV and LAML wrt rho (log smoothing parameters)

Usage

grad_rho(
X_GL,
GL_temp,
haz_GL,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
S_list,
temp_LAML,
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Vp,
S_beta,
beta,
inverse_new_S,
X,
temp_deriv3,
event,
expected,
type,
Ve,
mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv_rho_beta firt derivative of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature

S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

temp_LAML temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix

X design matrix for the model

temp_deriv3 temporary matrix for third derivatives calculation when type="net" to save com-
putation time

event vector of right-censoring indicators

expected vector of expected hazard rates

type "net" or "overall"

Ve frequentist covariance matrix

mat_temp temporary matrix used when method="LCV" to save computation time

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"
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Value

List of objects with the following items:

grad_rho gradient vector of LCV or LAML
deriv_rho_inv_Hess_beta

List of first derivatives of Vp wrt rho
deriv_rho_Hess_unpen_beta

List of first derivatives of the Hessian of the unpenalized log-likelihood wrt rho

Hess_rho Hessian matrix of LCV and LAML wrt rho (log smoothing parameters)

Description

Hessian matrix of LCV and LAML wrt rho (log smoothing parameters)

Usage

Hess_rho(
X_GL,
X_GL_Q,
GL_temp,
haz_GL,
deriv2_rho_beta,
deriv_rho_beta,
weights,
tm,
nb_smooth,
p,
n_legendre,
deriv_rho_inv_Hess_beta,
deriv_rho_Hess_unpen_beta,
S_list,
minus_eigen_inv_Hess_beta,
temp_LAML,
temp_LAML2,
Vp,
S_beta,
beta,
inverse_new_S,
X,
X_Q,
temp_deriv3,
temp_deriv4,
event,
expected,
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type,
Ve,
deriv_rho_Ve,
mat_temp,
deriv_mat_temp,
eigen_mat_temp,
method

)

Arguments

X_GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

X_GL_Q list of transformed matrices from X_GL in order to calculate only the diagonal
of the fourth derivative of the likelihood

GL_temp list of vectors used to make intermediate calculations and save computation time

haz_GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration in order to save computation time

deriv2_rho_beta

second derivatives of beta wrt rho (implicit differentiation)

deriv_rho_beta firt derivatives of beta wrt rho (implicit differentiation)

weights vector of weights for Gauss-Legendre integration on [-1;1]

tm vector of midpoints times for Gauss-Legendre integration; tm = 0.5*(t1 - t0)

nb_smooth number of smoothing parameters

p number of regression parameters

n_legendre number of nodes for Gauss-Legendre quadrature
deriv_rho_inv_Hess_beta

list of first derivatives of Vp wrt rho
deriv_rho_Hess_unpen_beta

list of first derivatives of Hessian of unpenalized log likelihood wrt rho

S_list List of all the rescaled penalty matrices multiplied by their associated smoothing
parameters

minus_eigen_inv_Hess_beta

vector of eigenvalues of Vp

temp_LAML temporary matrix used when method="LAML" to save computation time

temp_LAML2 temporary matrix used when method="LAML" to save computation time

Vp Bayesian covariance matrix

S_beta List such that S_beta[[i]]=S_list[[i]]%*%beta

beta vector of estimated regression parameters

inverse_new_S inverse of the penalty matrix

X design matrix for the model

X_Q transformed design matrix in order to calculate only the diagonal of the fourth
derivative of the likelihood
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temp_deriv3 temporary matrix for third derivatives calculation when type="net" to save com-
putation time

temp_deriv4 temporary matrix for fourth derivatives calculation when type="net" to save
computation time

event vector of right-censoring indicators

expected vector of expected hazard rates

type "net" or "overall"

Ve frequentist covariance matrix

deriv_rho_Ve list of derivatives of Ve wrt rho

mat_temp temporary matrix used when method="LCV" to save computation time

deriv_mat_temp list of derivatives of mat_temp wrt rho

eigen_mat_temp vector of eigenvalues of mat_temp

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

Value

Hessian matrix of LCV or LAML wrt rho

instr Position of the nth occurrence of a string in another one

Description

Returns the position of the nth occurrence of str2 in str1. Returns 0 if str2 is not found. This code
was first suggested by Abdelmonem Mahmoud Amer in https://stackoverflow.com/a/33005653/5421090

Usage

instr(str1, str2, startpos = 1, n = 1)

Arguments

str1 main string in which str2 is to be found

str2 substring contained in str1

startpos starting position in str1; default is 1

n which occurrence is to be found; default is 1

Value

number representing the nth position of str2 in str1
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Examples

library(survPen)

instr("character test to find the position of the third letter r","r",n=3)

inv.repam Reverses the initial reparameterization for stable evaluation of the log
determinant of the penalty matrix

Description

Transforms the final model by reversing the initial reparameterization performed by repam. Derives
the corrected version of the Bayesian covariance matrix

Usage

inv.repam(model, X.ini, S.pen.ini)

Arguments

model survPen object, see survPen.fit for details

X.ini initial design matrix (before reparameterization)

S.pen.ini initial penalty matrices

Value

survPen object with standard parameterization

model.cons Design and penalty matrices for the model

Description

Sets up the model before optimization. Builds the design matrix, the penalty matrix and all the
design matrices needed for Gauss-Legendre quadrature.
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Usage

model.cons(
formula,
lambda,
data.spec,
t1,
t1.name,
t0,
t0.name,
event,
event.name,
expected,
expected.name,
type,
n.legendre,
cl,
beta.ini

)

Arguments

formula formula object identifying the model

lambda vector of smoothing parameters

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated

t1 vector of follow-up times

t1.name name of t1 in data.spec

t0 vector of origin times (usually filled with zeros)

t0.name name of t0 in data.spec

event vector of censoring indicators

event.name name of event in data.spec

expected vector of expected hazard

expected.name name of expected in data.spec

type "net" or "overall"

n.legendre number of nodes for Gauss-Legendre quadrature

cl original survPen call

beta.ini initial set of regression parameters

Value

List of objects with the following items:

cl original survPen call

type "net" or "overall"
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n.legendre number of nodes for Gauss-Legendre quadrature. If is.pwcst is TRUE, for sim-
plicity of implementation, n.legendre actually corresponds to the number of sub-
intervals

n number of individuals

p number of parameters

X.para design matrix associated with fully parametric parameters (unpenalized)

X.smooth design matrix associated with the penalized parameters

X design matrix for the model

is.pwcst TRUE if there is a piecewise constant (excess) hazard specification. In that case
the cumulative hazard can be derived without Gauss-Legendre quadrature

pwcst.breaks if is.pwcst is TRUE, vector of breaks defining the sub-intervals on which the
hazard is constant. Otherwise NULL.

pwcst.weights if is.pwcst is TRUE, matrix of weights giving the time contribution of each in-
dividual on each sub-interval. Otherwise NULL.

leg list of nodes and weights for Gauss-Legendre integration on [-1;1] as returned
by gauss.quad

X.GL list of matrices (length(X.GL)=n.legendre) for Gauss-Legendre quadrature

S penalty matrix for the model. Sum of the elements of S.list

S.scale vector of rescaling factors for the penalty matrices

rank.S rank of the penalty matrix

S.F balanced penalty matrix as described in section 3.1.2 of (Wood,2016). Sum of
the elements of S.F.list

U.F Eigen vectors of S.F, useful for the initial reparameterization to separate penal-
ized ad unpenalized subvectors. Allows stable evaluation of the log determinant
of S and its derivatives

S.smf List of penalty matrices associated with all "smf" calls

S.tensor List of penalty matrices associated with all "tensor" calls

S.tint List of penalty matrices associated with all "tint" calls

S.rd List of penalty matrices associated with all "rd" calls
smooth.name.smf

List of names for the "smf" calls associated with S.smf
smooth.name.tensor

List of names for the "tensor" calls associated with S.tensor
smooth.name.tint

List of names for the "tint" calls associated with S.tint

smooth.name.rd List of names for the "rd" calls associated with S.rd

S.pen List of all the rescaled penalty matrices redimensioned to df.tot size. Every
element of pen noted pen[[i]] is made from a penalty matrix returned by
smooth.cons and is multiplied by the factor S.scale=norm(X,type="I")^2/norm(pen[[i]],type="I")

S.list Equivalent to S.pen but with every element multiplied by its associated smooth-
ing parameter
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S.F.list Equivalent to S.pen but with every element divided by its Frobenius norm
lambda vector of smoothing parameters
df.para degrees of freedom associated with fully parametric terms (unpenalized)
df.smooth degrees of freedom associated with penalized terms
df.tot df.para + df.smooth

list.smf List of all smf.smooth.spec objects contained in the model
list.tensor List of all tensor.smooth.spec objects contained in the model
list.tint List of all tint.smooth.spec objects contained in the model
nb.smooth number of smoothing parameters
Z.smf List of matrices that represents the sum-to-zero constraints to apply for smf

splines
Z.tensor List of matrices that represents the sum-to-zero constraints to apply for tensor

splines
Z.tint List of matrices that represents the sum-to-zero constraints to apply for tint

splines
beta.ini initial set of regression parameters

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# The following code sets up everything we need in order to fit the model
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

NR.beta Inner Newton-Raphson algorithm for regression parameters estima-
tion

Description

Applies Newton-Raphson algorithm for beta estimation. Two specific modifications aims at guar-
anteeing convergence : first the hessian is perturbed whenever it is not positive definite and second,
at each step, if the penalized log-likelihood is not maximized, the step is halved until it is.
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Usage

NR.beta(build, beta.ini, detail.beta, max.it.beta = 200, tol.beta = 1e-04)

Arguments

build list of objects returned by model.cons

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

tol.beta convergence tolerance for regression parameters; default is 1e-04

Details

If we note ll.pen and beta respectively the current penalized log-likelihood and estimated pa-
rameters and ll.pen.old and betaold the previous ones, the algorithm goes on while (abs(ll.pen-
ll.pen.old)>tol.beta) or any(abs((beta-betaold)/betaold)>tol.beta)

Value

List of objects:

beta estimated regression parameters

ll.unpen log-likelihood at convergence

ll.pen penalized log-likelihood at convergence

haz.GL list of all the matrix-vector multiplications X.GL[[i]]%*%beta for Gauss Leg-
endre integration. Useful to avoid repeating operations in survPen.fit

iter.beta number of iterations needed to converge

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
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model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Estimating the regression parameters at given smoothing parameter (here lambda=0)
Newton1 <- NR.beta(model.c,beta.ini=rep(0,4),detail.beta=TRUE)

NR.rho Outer Newton-Raphson algorithm for smoothing parameters estima-
tion via LCV or LAML optimization

Description

Applies Newton-Raphson algorithm for smoothing parameters estimation. Two specific modifica-
tions aims at guaranteeing convergence : first the hessian is perturbed whenever it is not positive
definite and second, at each step, if LCV or -LAML is not minimized, the step is halved until it is.

Usage

NR.rho(
build,
rho.ini,
data,
formula,
max.it.beta = 200,
max.it.rho = 30,
beta.ini = NULL,
detail.rho = FALSE,
detail.beta = FALSE,
nb.smooth,
tol.beta = 1e-04,
tol.rho = 1e-04,
step.max = 5,
method = "LAML"

)

Arguments

build list of objects returned by model.cons

rho.ini vector of initial log smoothing parameters; if it is NULL, all log lambda are set
to -1

data an optional data frame containing the variables in the model

formula formula object specifying the model

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200
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max.it.rho maximum number of iterations to reach convergence in the smoothing parame-
ters; default is 30

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.rho if TRUE, details concerning the optimization process in the smoothing parame-
ters are displayed; default is FALSE

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

nb.smooth number of smoothing parameters

tol.beta convergence tolerance for regression parameters; default is 1e-04

tol.rho convergence tolerance for smoothing parameters; default is 1e-04

step.max maximum absolute value possible for any component of the step vector (on the
log smoothing parameter scale); default is 5

method LCV or LAML; default is LAML

Details

If we note val the current LCV or LAML value, val.old the previous one and grad the gradient
vector of LCV or LAML with respect to the log smoothing parameters, the algorithm goes on
while(abs(val-val.old)>tol.rho|any(abs(grad)>tol.rho))

Value

object of class survPen (see survPen.fit for details)

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=0,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Estimating the smoothing parameter and the regression parameters
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# we need to apply a reparameterization to model.c before fitting
constructor <- repam(model.c)$build # model constructor
constructor$optim.rho <- 1 # we tell it we want to estimate the log smoothing parameters (rho)
Newton2 <- NR.rho(constructor,rho.ini=-1,data,form,nb.smooth=1,detail.rho=TRUE)

predict.survPen Hazard and Survival prediction from fitted survPen model

Description

Takes a fitted survPen object and produces hazard and survival predictions given a new set of values
for the model covariates.

Usage

## S3 method for class 'survPen'
predict(
object,
newdata,
newdata.ref = NULL,
n.legendre = 50,
conf.int = 0.95,
do.surv = TRUE,
type = "standard",
exclude.random = FALSE,
get.deriv.H = FALSE,
...

)

Arguments

object a fitted survPen object as produced by survPen.fit

newdata data frame giving the new covariates value

newdata.ref data frame giving the new covariates value for the reference population (used
only when type="HR")

n.legendre number of nodes to approximate the cumulative hazard by Gauss-Legendre quadra-
ture; default is 50

conf.int numeric value giving the precision of the confidence intervals; default is 0.95

do.surv If TRUE, the survival and its lower and upper confidence values are computed.
Survival computation requires numerical integration and can be time-consuming
so if you only want the hazard use do.surv=FALSE; default is TRUE

type if type="lpmatrix" returns the design matrix (or linear predictor matrix) corre-
sponding to the new values of the covariates; if equals "HR", returns the pre-
dicted HR and CIs between newdata and newdata.ref; default is "standard" for
classical hazard and survival estimation
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exclude.random if TRUE all random effects are set to zero; default is FALSE

get.deriv.H if TRUE, the derivatives wrt to the regression parameters of the cumulative haz-
ard are returned; default is FALSE

... other arguments

Details

The confidence intervals noted CI.U are built on the log cumulative hazard scale U=log(H) (efficient
scale in terms of respect towards the normality assumption) using Delta method. The confidence
intervals on the survival scale are then CI.surv = exp(-exp(CI.U))

Value

List of objects:

haz hazard predicted by the model

haz.inf lower value for the confidence interval on the hazard based on the Bayesian
covariance matrix Vp (Wood et al. 2016)

haz.sup Upper value for the confidence interval on the hazard based on the Bayesian
covariance matrix Vp

surv survival predicted by the model

surv.inf lower value for the confidence interval on the survival based on the Bayesian
covariance matrix Vp

surv.sup Upper value for the confidence interval on the survival based on the Bayesian
covariance matrix Vp

deriv.H derivatives wrt to the regression parameters of the cumulative hazard. Useful to
calculate standardized survival

HR predicted hazard ratio ; only when type = "HR"

HR.inf lower value for the confidence interval on the hazard ratio based on the Bayesian
covariance matrix Vp ; only when type = "HR"

HR.sup Upper value for the confidence interval on the hazard ratio based on the Bayesian
covariance matrix Vp ; only when type = "HR"

References

Wood, S.N., Pya, N. and Saefken, B. (2016), Smoothing parameter and model selection for general
smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575

Examples

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

f1 <- ~tensor(fu,age,df=c(5,5))

# hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")
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# predicting hazard and survival curves for age 60
nt <- seq(0,5,le=50)
pred <- predict(mod1,data.frame(fu=nt,age=60))
pred$haz
pred$surv

# predicting hazard ratio at 1 year according to age (with reference age of 50)
newdata1 <- data.frame(fu=1,age=seq(30,90,by=1))
newdata.ref1 <- data.frame(fu=1,age=rep(50,times=61))
predHR_1 <- predict(mod1,newdata=newdata1,newdata.ref=newdata.ref1,type="HR")
predHR_1$HR
predHR_1$HR.inf
predHR_1$HR.sup

# predicting hazard ratio at 3 years according to age (with reference age of 50)
newdata3 <- data.frame(fu=3,age=seq(30,90,by=1))
newdata.ref3 <- data.frame(fu=3,age=rep(50,times=61))
predHR_3 <- predict(mod1,newdata=newdata3,newdata.ref=newdata.ref3,type="HR")
predHR_3$HR
predHR_3$HR.inf
predHR_3$HR.sup

print.summary.survPen print summary for a survPen fit

Description

print summary for a survPen fit

Usage

## S3 method for class 'summary.survPen'
print(
x,
digits = max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
...

)

Arguments

x an object of class summary.survPen

digits controls number of digits printed in output.

signif.stars Should significance stars be printed alongside output.

... other arguments
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Value

print of summary

pwcst Defining piecewise constant (excess) hazard in survPen formulae

Description

Used inside a formula object to define a piecewise constant (excess) hazard. This is useful since
it triggers an explicit calculation of cumulative hazard calculation (much more efficient and more
precise than Gauss-Legendre quadrature when hazard is constant). The breaks given are used to
defined sub-intervals that are left-open (except the first interval which is always left-closed) and
right-closed. Internally, this constructor uses the cut function on the follow-up time with options
include.lowest=TRUE and right=TRUE Important : this function must not be used with other time-
dependent effect functions because the Gauss-Legendre quadrature will not operate correctly. If you
really want to fit such a model, please use the cut function with the time variable as an argument to fit
a piecewise constant hazard (and do not forget to use a huge number of Gauss-Legendre quadrature
nodes, typically n.legendre=500)

Usage

pwcst(breaks)

Arguments

breaks numeric vector that specifies the boundaries of each sub-interval on which the
hazard is constant

Value

object of class pwcst.spec

pwcst.breaks numeric vector that specifies the boundaries of each sub-interval on which the
hazard is constant

Examples

library(survPen)

data(datCancer)

# piece constant hazard on 6 sub-intervals : [0;0.5]; ]0.5;1]; ]1;2]; ]2;3]; ]3;4]; ]4;5]
formula <- ~pwcst(breaks=c(0,0.5,1,2,3,4,5))
mod <- survPen(formula,t1=fu,event=dead,data=datCancer)

# The same but in an inefficient way
formula2 <- ~cut(fu,breaks=c(0,0.5,1,2,3,4,5),include.lowest=TRUE,right=TRUE)
mod.inefficient <- survPen(formula2,t1=fu,event=dead,data=datCancer,n.legendre=500)
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rd Defining random effects in survPen formulae

Description

Used inside a formula object to define a random effect.

Usage

rd(...)

Arguments

... Any number of covariates separated by ","

Value

object of class rd.smooth.spec

Examples

# cubic regression spline of time with 10 unspecified knots + random effect at the cluster level
formula.test <- ~smf(time,df=10) + rd(cluster)

repam Applies initial reparameterization for stable evaluation of the log de-
terminant of the penalty matrix

Description

Transforms the object from model.cons by applying the matrix reparameterization (matrix U.F).
The reparameterization is reversed at convergence by inv.repam.

Usage

repam(build)

Arguments

build object as returned by model.cons
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Value

build an object as returned by model.cons

X.ini initial design matrix (before reparameterization)

S.pen.ini initial penalty matrices

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)

form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# Reparameterization allows separating the parameters into unpenalized and
# penalized ones for maximum numerical stability
re.model.c <- repam(model.c)

smf Defining smooths in survPen formulae

Description

Used inside a formula object to define a smooth, a tensor product smooth or a tensor product in-
teraction. Natural cubic regression splines (linear beyond the knots, equivalent to ns from package
splines) are used as marginal bases. While tensor builds a tensor product of marginal bases in-
cluding the intercepts, tint applies a tensor product of the marginal bases without their intercepts.
Unlike tensor, the marginal effects of the covariates should also be present in the formula when
using tint. For a conceptual difference between tensor products and tensor product interactions
see Section 5.6.3 from Wood (2017)

Usage

smf(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)

tensor(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)
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tint(..., knots = NULL, df = NULL, by = NULL, same.rho = FALSE)

Arguments

... Any number of covariates separated by ","

knots numeric vector that specifies the knots of the splines (including boundaries);
default is NULL, in which case the knots are spread through the covariate values
using quantiles. Precisely, for the term "smf(x,df=df1)", the vector of knots will
be: quantile(unique(x),seq(0,1,length=df1))

df numeric value that indicates the number of knots (or degrees of freedom) de-
sired; default is NULL. If knots and df are NULL, df will be set to 10

by numeric or factor variable in order to define a varying coefficient smooth

same.rho if the specified by variable is a factor, specifies whether the smoothing parame-
ters should be the same for all levels; default is FALSE.

Value

object of class smf.smooth.spec, tensor.smooth.spec or tint.smooth.spec (see smooth.spec
for details)

References

Wood, S. N. (2017), Generalized additive models: an introduction with R. Second Edition. London:
Chapman & Hall/CRC.

Examples

# penalized cubic regression spline of time with 5 unspecified knots
formula.test <- ~smf(time,df=5)

# suppose that we want to fit a model from formula.test
library(survPen)
data(datCancer)

mod.test <- survPen(~smf(fu,df=5) ,data=datCancer,t1=fu,event=dead)

# then the knots can be retrieved like this:
mod.test$list.smf[[1]]$knots
# or calculated like this
quantile(unique(datCancer$fu),seq(0,1,length=5))

# penalized cubic regression splines of time and age with respectively 5 and 7 unspecified knots
formula.test2 <- ~smf(time,df=5)+smf(age,df=7)

# penalized cubic regression splines of time and age with respectively 3 and 4 specified knots
formula.test3 <- ~smf(time,knots=c(0,3,5))+smf(age,knots=c(30,50,70,90))

# penalized tensor product for time and age with respectively 5 and 4 unspecified knots leading
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# to 5*4 = 20 regression parameters
formula.test <- ~tensor(time,age,df=c(5,4))

# penalized tensor product for time and age with respectively 3 and 4 specified knots
formula.test3 <- ~tensor(time,agec,knots=list(c(0,3,5),c(30,50,70,90)))

# penalized tensor product for time, age and year with respectively 6, 5 and 4 unspecified knots
formula.test <- ~tensor(time,age,year,df=c(6,5,4))

# penalized tensor product interaction for time and age with respectively 5 and 4 unspecified knots
# main effects are specified as penalized cubic regression splines
formula.test <- ~smf(time,df=5)+smf(age,df=4)+tint(time,age,df=c(5,4))

smooth.cons Design and penalty matrices of penalized splines in a smooth.spec ob-
ject

Description

Builds the design and penalty matrices from the result of smooth.spec.

Usage

smooth.cons(
term,
knots,
df,
by = NULL,
option,
data.spec,
same.rho = FALSE,
name

)

Arguments

term Vector of strings that generally comes from the value "term" of a smooth.spec
object.

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries).

df Degrees of freedom: numeric vector that indicates the number of knots desired
for each covariate.

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL.

option "smf", "tensor" or "tint".
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data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated; default is NULL.

same.rho if there is a factor by variable, should the smoothing parameters be the same for
all levels; default is FALSE.

name simplified name of the smooth.spec call.

Value

List of objects with the following items:

X Design matrix

pen List of penalty matrices

term Vector of strings giving the names of each covariate

knots list of numeric vectors that specifies the knots for each covariate

dim Number of covariates

all.df Numeric vector giving the number of knots associated with each covariate

sum.df Sum of all.df

Z.smf List of matrices that represents the sum-to-zero constraint to apply for "smf"
splines

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for "tensor"
splines

Z.tint List of matrices that represents the sum-to-zero constraint to apply for "tint"
splines

lambda.name name of the smoothing parameters

Examples

library(survPen)

# standard spline of time with 4 knots (so we get a design matrix with 3 columns
# because of centering constraint)

data <- data.frame(time=seq(0,5,length=100))
smooth.c <- smooth.cons("time",knots=list(c(0,1,3,5)),df=4,option="smf",
data.spec=data,name="smf(time)")

smooth.cons.integral Design matrix of penalized splines in a smooth.spec object for Gauss-
Legendre quadrature

Description

Almost identical to smooth.cons. This version is dedicated to Gauss-Legendre quadrature. Here,
the sum-to-zero constraints must be specified so that they correspond to the ones that were calcu-
lated with the initial dataset.
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Usage

smooth.cons.integral(
term,
knots,
df,
by = NULL,
option,
data.spec,
Z.smf,
Z.tensor,
Z.tint,
name

)

Arguments

term Vector of strings that generally comes from the value "term" of a smooth.spec
object

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries).

df Degrees of freedom : numeric vector that indicates the number of knots desired
for each covariate.

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL.

option "smf", "tensor" or "tint".

data.spec data frame that represents the environment from which the covariate values and
knots are to be calculated; default is NULL.

Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf
splines.

Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor
splines.

Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint
splines.

name simplified name of the smooth.spec call.

Value

design matrix

Examples

library(survPen)

# standard spline of time with 4 knots (so we get a design matrix with 3 columns
# because of centering constraint)
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data <- data.frame(time=seq(0,5,length=100))

# retrieving sum-to-zero constraint matrices
Z.smf <- smooth.cons("time",knots=list(c(0,1,3,5)),df=4,option="smf",
data.spec=data,name="smf(time)")$Z.smf

# constructing the design matrices for Gauss-Legendre quadrature
smooth.c.int <- smooth.cons.integral("time",knots=list(c(0,1,3,5)),df=4,option="smf",data.spec=data,
name="smf(time)",Z.smf=Z.smf,Z.tensor=NULL,Z.tint=NULL)

smooth.spec Covariates specified as penalized splines

Description

Specifies the covariates to be considered as penalized splines.

Usage

smooth.spec(
...,
knots = NULL,
df = NULL,
by = NULL,
option = NULL,
same.rho = FALSE

)

Arguments

... Numeric vectors specified in smf, tensor or tint

knots List of numeric vectors that specifies the knots of the splines (including bound-
aries); default is NULL

df Degrees of freedom: numeric vector that indicates the number of knots desired
for each covariate; default is NULL

by numeric or factor variable in order to define a varying coefficient smooth; default
is NULL

option "smf", "tensor" or "tint". Depends on the wrapper function; default is "smf"

same.rho if there is a factor by variable, should the smoothing parameters be the same for
all levels; default is FALSE.
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Value

object of class smooth.spec

term Vector of strings giving the names of each covariate specified in ...

dim Numeric value giving the number of covariates associated with this spline

knots list of numeric vectors that specifies the knots for each covariate

df Numeric vector giving the number of knots associated with each covariate

by numeric or factor variable in order to define a varying coefficient smooth

same.rho if there is a factor by variable, should the smoothing parameters be the same for
all levels; default is FALSE

name simplified name of the call to function smooth.spec

Examples

library(survPen)

# standard spline of time with 10 unspecified knots
smooth.spec(time)

# tensor of time and age with 5*5 specified knots
smooth.s <- smooth.spec(time,age,knots=list(time=seq(0,5,length=5),age=seq(20,80,length=5)),
option="tensor")

summary.survPen Summary for a survPen fit

Description

Takes a fitted survPen object and produces various useful summaries from it.

Usage

## S3 method for class 'survPen'
summary(object, ...)

Arguments

object a fitted survPen object as produced by survPen.fit

... other arguments
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Value

List of objects:

call the original survPen call

formula the original survPen formula

coefficients reports the regression parameters estimates for unpenalized terms with the asso-
ciated standard errors

edf.per.smooth reports the edf associated with each smooth term

random TRUE if there are random effects in the model

random.effects reports the estimates of the log standard deviation (log(sd)) of every random
effects plus the estimated standard error (also on the log(sd) scale)

likelihood unpenalized likelihood of the model

penalized.likelihood

penalized likelihood of the model

nb.smooth number of smoothing parameters

smoothing.parameter

smoothing parameters estimates

parameters number of regression parameters

edf effective degrees of freedom

method smoothing selection criterion used (LAML or LCV)

val.criterion minimized value of criterion. For LAML, what is reported is the negative log
marginal likelihood

converged convergence indicator, TRUE or FALSE. TRUE if Hess.beta.modif=FALSE and
Hess.rho.modif=FALSE (or NULL)

Examples

library(survPen)

data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : unidimensional penalized spline for time since diagnosis with 5 knots
f1 <- ~smf(fu,df=5)

# fitting hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")

# summary
summary(mod1)
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survPen (Excess) hazard model with (multidimensional) penalized splines and
integrated smoothness estimation

Description

Fits an (excess) hazard model with (multidimensional) penalized splines allowing for time-dependent
effects, non-linear effects and interactions between several continuous covariates. The linear pre-
dictor is specified on the logarithm of the (excess) hazard. Smooth terms are represented using
cubic regression splines with associated quadratic penalties. For multidimensional smooths, tensor
product splines or tensor product interactions are available. Smoothness is estimated automatically
by optimizing one of two criteria: Laplace approximate marginal likelihood (LAML) or likelihood
cross-validation (LCV). When specifying the model’s formula, no distinction is made between the
part relative to the form of the baseline hazard and the one relative to the effects of the covariates.
Thus, time-dependent effects are naturally specified as interactions with some function of time via
"*" or ":". See the examples below for more details. The main functions of the survPen package are
survPen, smf, tensor, tint and rd. The first one fits the model while the other four are construc-
tors for penalized splines.

The user must be aware that the survPen package does not depend on mgcv. Thus, all the func-
tionalities available in mgcv in terms of types of splines (such as thin plate regression splines or
P-splines) are not available in survPen (yet).

Usage

survPen(
formula,
data,
t1,
t0 = NULL,
event,
expected = NULL,
lambda = NULL,
rho.ini = NULL,
max.it.beta = 200,
max.it.rho = 30,
beta.ini = NULL,
detail.rho = FALSE,
detail.beta = FALSE,
n.legendre = 20,
method = "LAML",
tol.beta = 1e-04,
tol.rho = 1e-04,
step.max = 5

)
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Arguments

formula formula object specifying the model. Penalized terms are specified using smf
(comparable to s(...,bs="cr") in mgcv), tensor (comparable to te(...,bs="cr")
in mgcv), tint (comparable to ti(...,bs="cr") in mgcv), or rd (comparable
to s(...,bs="re") in mgcv).

data an optional data frame containing the variables in the model

t1 vector of follow-up times or name of the column in data containing follow-up
times

t0 vector of origin times or name of the column in data containing origin times;
allows to take into account left truncation; default is NULL, in which case it will
be a vector of zeroes

event vector of right-censoring indicators or name of the column in data containing
right-censoring indicators; 1 if the event occurred and 0 otherwise

expected (for net survival only) vector of expected hazard or name of the column in data
containing expected hazard; default is NULL, in which case overall survival will
be estimated

lambda vector of smoothing parameters; default is NULL when it is to be estimated by
LAML or LCV

rho.ini vector of initial log smoothing parameters; default is NULL, in which case every
initial log lambda will be -1

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

max.it.rho maximum number of iterations to reach convergence in the smoothing parame-
ters; default is 30

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.rho if TRUE, details concerning the optimization process in the smoothing parame-
ters are displayed; default is FALSE

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

n.legendre number of Gauss-Legendre quadrature nodes to be used to compute the cumu-
lative hazard; default is 20

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

tol.beta convergence tolerance for regression parameters; default is 1e-04. See NR.beta
for details

tol.rho convergence tolerance for smoothing parameters; default is 1e-04. See NR.rho
for details

step.max maximum absolute value possible for any component of the step vector (on the
log smoothing parameter scale) in LCV or LAML optimization; default is 5. If
necessary, consider lowering this value to achieve convergence
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Details

In time-to-event analysis, we may deal with one or several continuous covariates whose functional
forms, time-dependent effects and interaction structure are challenging. One possible way to deal
with these effects and interactions is to use the classical approximation of the survival likelihood
by a Poisson likelihood. Thus, by artificially splitting the data, the package mgcv can then be used
to fit penalized hazard models (Remontet et al. 2018). The problem with this option is that the
setup is rather complex and the method can fail with huge datasets (before splitting). Wood et al.
(2016) provided a general penalized framework that made available smooth function estimation to a
wide variety of models. They proposed to estimate smoothing parameters by maximizing a Laplace
approximate marginal likelihood (LAML) criterion and demonstrate how statistical consistency is
maintained by doing so. The survPen function implements the framework described by Wood et
al. (2016) for modelling time-to-event data without requiring data splitting and Poisson likelihood
approximation. The effects of continuous covariates are represented using low rank spline bases
with associated quadratic penalties. The survPen function allows to account simultaneously for
time-dependent effects, non-linear effects and interactions between several continuous covariates
without the need to build a possibly demanding model-selection procedure. Besides LAML, a
likelihood cross-validation (LCV) criterion (O Sullivan 1988) can be used for smoothing parameter
estimation. First and second derivatives of LCV with respect to the smoothing parameters are
implemented so that LCV optimization is computationally equivalent to the LAML optimization
proposed by Wood et al. (2016). In practice, LAML optimization is generally both a bit faster and a
bit more stable so it is used as default. For m covariates (x1, . . . , xm), if we note h(t, x1, . . . , xm)
the hazard at time t, the hazard model is the following :

log[h(t, x1, . . . , xm)] =
∑
j

gj(t, x1, . . . , xm)

where each gj is either the marginal basis of a specific covariate or a tensor product smooth of any
number of covariates. The marginal bases of the covariates are represented as natural (or restricted)
cubic splines (as in function ns from library splines) with associated quadratic penalties. Full
parametric (unpenalized) terms for the effects of covariates are also possible (see the examples be-
low). Each gj is then associated with zero, one or several smoothing parameters. The estimation
procedure is based on outer Newton-Raphson iterations for the smoothing parameters and on inner
Newton-Raphson iterations for the regression parameters (see Wood et al. 2016). Estimation of the
regression parameters in the inner algorithm is by direct maximization of the penalized likelihood
of the survival model, therefore avoiding data augmentation and Poisson likelihood approximation.
The cumulative hazard included in the log-likelihood is approximated by Gauss-Legendre quadra-
ture for numerical stability.

Value

Object of class "survPen" (see survPenObject for details)

by variables

The smf, tensor and tint terms used to specify smooths accept an argument by. This by argu-
ment allows for building varying-coefficient models i.e. for letting smooths interact with factors or
parametric terms. If a by variable is numeric, then its ith element multiples the ith row of the model
matrix corresponding to the smooth term concerned. If a by variable is a factor then it generates an
indicator vector for each level of the factor, unless it is an ordered factor. In the non-ordered case,



survPen 37

the model matrix for the smooth term is then replicated for each factor level, and each copy has its
rows multiplied by the corresponding rows of its indicator variable. The smoothness penalties are
also duplicated for each factor level. In short a different smooth is generated for each factor level.
The main interest of by variables over separated models is the same.rho argument (for smf, tensor
and tint) which allows forcing all smooths to have the same smoothing parameter(s). Ordered by
variables are handled in the same way, except that no smooth is generated for the first level of the
ordered factor. This is useful if you are interested in differences from a reference level.

See the survival_analysis_with_survPen vignette for more details.

Random effects

i.i.d random effects can be specified using penalization. Indeed, the ridge penalty is equivalent to an
assumption that the regression parameters are i.i.d. normal random effects. Thus, it is easy to fit a
frailty hazard model. For example, consider the model term rd(clust) which will result in a model
matrix component corresponding to model.matrix(~clust-1) being added to the model matrix
for the whole model. The associated regression parameters are assumed i.i.d. normal, with unknown
variance (to be estimated). This assumption is equivalent to an identity penalty matrix (i.e. a ridge
penalty) on the regression parameters. The unknown smoothing parameter λ associated with the
term rd(clust) is directly linked to the unknown variance σ2: σ2 = 1

λ∗S.scale . Then, the estimated
log standard deviation is: log(σ̂) = −0.5∗ log(λ̂)−0.5∗ log(S.scale). And the estimated variance
of the log standard deviation is: V ar[log(σ̂)] = 0.25 ∗ V ar[log(λ̂)] = 0.25 ∗ inv.Hess.rho. See
the survival_analysis_with_survPen vignette for more details. This approach allows implementing
commonly used random effect structures. For example if g is a factor then rd(g) produces a random
parameter for each level of g, the random parameters being i.i.d. normal. If g is a factor and x is
numeric, then rd(g,x) produces an i.i.d. normal random slope relating the response to x for each
level of g. Thus, random effects treated as penalized splines allow specifying frailty (excess) hazard
models (Charvat et al. 2016). For each individual i from cluster (usually geographical unit) j, a
possible model would be:

log[h(tij , xij1, . . . , xijm)] =
∑
k

gk(tij , xij1, . . . , xijm) + wj

where w_j follows a normal distribution with mean 0. The random effect associated with the cluster
variable is specified with the model term rd(cluster). We could also specify a random effect
depending on age for example with the model term rd(cluster,age). u_j = exp(w_j) is known
as the shared frailty.

See the survival_analysis_with_survPen vignette for more details.

Excess hazard model

When studying the survival of patients who suffer from a common pathology we may be interested
in the concept of excess mortality that represents the mortality due to that pathology. For example,
in cancer epidemiology, individuals may die from cancer or from another cause. The problem is
that the cause of death is often either unavailable or unreliable. Supposing that the mortality due
to other causes may be obtained from the total mortality of the general population (called expected
mortality for cancer patients), we can define the concept of excess mortality. The excess mortality is
directly linked to the concept of net survival, which would be the observed survival if patients could
not die from other causes. Therefore, when such competing events are present, one may choose to
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fit an excess hazard model instead of a classical hazard model. Flexible excess hazard models have
already been proposed (for examples see Remontet et al. 2007, Charvat et al. 2016) but none of
them deals with a penalized framework (in a non-fully Bayesian setting). Excess mortality can be
estimated supposing that, in patients suffering from a common pathology, mortality due to others
causes than the pathology can be obtained from the (all cause) mortality of the general population;
the latter is referred to as the expected mortality hP . The mortality observed in the patients (hO)
is actually decomposed as the sum of hP and the excess mortality due to the pathology (hE). This
may be written as:

hO(t, x) = hE(t, x) + hP (a+ t, z)

In that equation, t is the time since cancer diagnosis, a is the age at diagnosis, hP is the mortality of
the general population at age a+ t given demographical characteristics z (hP is considered known
and available from national statistics), and x a vector of variables that may have an effect on hE .
Including the age in the model is necessary in order to deal with the informative censoring due
to other causes of death. Thus, for m covariates (x1, . . . , xm), if we note hE(t, x1, . . . , xm) the
excess hazard at time t, the excess hazard model is the following:

log[hE(t, x1, . . . , xm)] =
∑
j

gj(t, x1, . . . , xm)

Convergence

No convergence indicator is given. If the function returns an object of class survPen, it means
that the algorithm has converged. If convergence issues occur, an error message is displayed. If
convergence issues occur, do not refrain to use detail.rho and/or detail.beta to see exactly what is
going on in the optimization process. To achieve convergence, consider lowering step.max and/or
changing rho.ini and beta.ini. If your excess hazard model fails to converge, consider fitting a hazard
model and use its estimated parameters as initial values for the excess hazard model. Finally, do not
refrain to change the "method" argument (LCV or LAML) if convergence issues occur.

Other

Be aware that all character variables are transformed to factors before fitting.
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Examples

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

#-------------------------------------------------------- example 0
# Comparison between restricted cubic splines and penalized restricted cubic splines

library(splines)

# unpenalized
f <- ~ns(fu,knots=c(0.25, 0.5, 1, 2, 4),Boundary.knots=c(0,5))

mod <- survPen(f,data=datCancer,t1=fu,event=dead)

# penalized
f.pen <- ~ smf(fu,knots=c(0,0.25, 0.5, 1, 2, 4,5)) # careful here: the boundary knots are included

mod.pen <- survPen(f.pen,data=datCancer,t1=fu,event=dead)

# predictions

new.time <- seq(0,5,length=100)
pred <- predict(mod,data.frame(fu=new.time))
pred.pen <- predict(mod.pen,data.frame(fu=new.time))

par(mfrow=c(1,1))
plot(new.time,pred$haz,type="l",ylim=c(0,0.2),main="hazard vs time",
xlab="time since diagnosis (years)",ylab="hazard",col="red")
lines(new.time,pred.pen$haz,col="blue3")
legend("topright",legend=c("unpenalized","penalized"),
col=c("red","blue3"),lty=rep(1,2))

#-------------------------------------------------------- example 1
# hazard models with unpenalized formulas compared to a penalized tensor product smooth
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library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# constant hazard model
f.cst <- ~1
mod.cst <- survPen(f.cst,data=datCancer,t1=fu,event=dead)

# piecewise constant hazard model
f.pwcst <- ~cut(fu,breaks=seq(0,5,by=0.5),include.lowest=TRUE)
mod.pwcst <- survPen(f.pwcst,data=datCancer,t1=fu,event=dead,n.legendre=200)
# we increase the number of points for Gauss-Legendre quadrature to make sure that the cumulative
# hazard is properly approximated

# linear effect of time
f.lin <- ~fu
mod.lin <- survPen(f.lin,data=datCancer,t1=fu,event=dead)

# linear effect of time and age with proportional effect of age
f.lin.age <- ~fu+age
mod.lin.age <- survPen(f.lin.age,data=datCancer,t1=fu,event=dead)

# linear effect of time and age with time-dependent effect of age (linear)
f.lin.inter.age <- ~fu*age
mod.lin.inter.age <- survPen(f.lin.inter.age,data=datCancer,t1=fu,event=dead)

# cubic B-spline of time with a knot at 1 year, linear effect of age and time-dependent effect
# of age with a quadratic B-spline of time with a knot at 1 year
library(splines)
f.spline.inter.age <- ~bs(fu,knots=c(1),Boundary.knots=c(0,5))+age+
age:bs(fu,knots=c(1),Boundary.knots=c(0,5),degree=2)
# here, bs indicates an unpenalized cubic spline

mod.spline.inter.age <- survPen(f.spline.inter.age,data=datCancer,t1=fu,event=dead)

# tensor of time and age
f.tensor <- ~tensor(fu,age)
mod.tensor <- survPen(f.tensor,data=datCancer,t1=fu,event=dead)

# predictions of the models at age 60

new.time <- seq(0,5,length=100)
pred.cst <- predict(mod.cst,data.frame(fu=new.time))
pred.pwcst <- predict(mod.pwcst,data.frame(fu=new.time))
pred.lin <- predict(mod.lin,data.frame(fu=new.time))
pred.lin.age <- predict(mod.lin.age,data.frame(fu=new.time,age=60))
pred.lin.inter.age <- predict(mod.lin.inter.age,data.frame(fu=new.time,age=60))
pred.spline.inter.age <- predict(mod.spline.inter.age,data.frame(fu=new.time,age=60))
pred.tensor <- predict(mod.tensor,data.frame(fu=new.time,age=60))

lwd1 <- 2
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par(mfrow=c(1,1))
plot(new.time,pred.cst$haz,type="l",ylim=c(0,0.2),main="hazard vs time",
xlab="time since diagnosis (years)",ylab="hazard",col="blue3",lwd=lwd1)
segments(x0=new.time[1:99],x1=new.time[2:100],y0=pred.pwcst$haz[1:99],col="lightblue2",lwd=lwd1)
lines(new.time,pred.lin$haz,col="green3",lwd=lwd1)
lines(new.time,pred.lin.age$haz,col="yellow",lwd=lwd1)
lines(new.time,pred.lin.inter.age$haz,col="orange",lwd=lwd1)
lines(new.time,pred.spline.inter.age$haz,col="red",lwd=lwd1)
lines(new.time,pred.tensor$haz,col="black",lwd=lwd1)
legend("topright",
legend=c("cst","pwcst","lin","lin.age","lin.inter.age","spline.inter.age","tensor"),
col=c("blue3","lightblue2","green3","yellow","orange","red","black"),
lty=rep(1,7),lwd=rep(lwd1,7))

# you can also calculate the hazard yourself with the lpmatrix option.
# For example, compare the following predictions:
haz.tensor <- pred.tensor$haz

X.tensor <- predict(mod.tensor,data.frame(fu=new.time,age=60),type="lpmatrix")
haz.tensor.lpmatrix <- exp(X.tensor%mult%mod.tensor$coefficients)

summary(haz.tensor.lpmatrix - haz.tensor)

#---------------- The 95% confidence intervals can be calculated like this:

# standard errors from the Bayesian covariance matrix Vp
std <- sqrt(rowSums((X.tensor%mult%mod.tensor$Vp)*X.tensor))

qt.norm <- stats::qnorm(1-(1-0.95)/2)
haz.inf <- as.vector(exp(X.tensor%mult%mod.tensor$coefficients-qt.norm*std))
haz.sup <- as.vector(exp(X.tensor%mult%mod.tensor$coefficients+qt.norm*std))

# checking that they are similar to the ones given by the predict function
summary(haz.inf - pred.tensor$haz.inf)
summary(haz.sup - pred.tensor$haz.sup)

#-------------------------------------------------------- example 2

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : unidimensional penalized spline for time since diagnosis with 5 knots
f1 <- ~smf(fu,df=5)
# when knots are not specified, quantiles are used. For example, for the term "smf(x,df=df1)",
# the vector of knots will be: quantile(unique(x),seq(0,1,length=df1))

# you can specify your own knots if you want
# f1 <- ~smf(fu,knots=c(0,1,3,6,8))

# hazard model
mod1 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LAML")
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summary(mod1)

# to see where the knots were placed
mod1$list.smf

# with LCV instead of LAML
mod1bis <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=NULL,method="LCV")
summary(mod1bis)

# hazard model taking into account left truncation (not representative of cancer data,
# the begin variable was simulated for illustration purposes only)
mod2 <- survPen(f1,data=datCancer,t0=begin,t1=fu,event=dead,expected=NULL,method="LAML")
summary(mod2)

# excess hazard model
mod3 <- survPen(f1,data=datCancer,t1=fu,event=dead,expected=rate,method="LAML")
summary(mod3)

# compare the predictions of the models
new.time <- seq(0,5,length=50)
pred1 <- predict(mod1,data.frame(fu=new.time))
pred1bis <- predict(mod1bis,data.frame(fu=new.time))
pred2 <- predict(mod2,data.frame(fu=new.time))
pred3 <- predict(mod3,data.frame(fu=new.time))

# LAML vs LCV
par(mfrow=c(1,2))
plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="LCV vs LAML",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred1bis$haz,col="blue3")
legend("topright",legend=c("LAML","LCV"),col=c("black","blue3"),lty=c(1,1))

plot(new.time,pred1$surv,type="l",ylim=c(0,1),main="LCV vs LAML",
xlab="time since diagnosis (years)",ylab="survival")
lines(new.time,pred1bis$surv,col="blue3")

# hazard vs excess hazard
par(mfrow=c(1,2))
plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="hazard vs excess hazard",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred3$haz,col="green3")
legend("topright",legend=c("overall","excess"),col=c("black","green3"),lty=c(1,1))

plot(new.time,pred1$surv,type="l",ylim=c(0,1),main="survival vs net survival",
xlab="time",ylab="survival")
lines(new.time,pred3$surv,col="green3")
legend("topright",legend=c("overall survival","net survival"), col=c("black","green3"), lty=c(1,1))

# hazard vs excess hazard with 95% Bayesian confidence intervals (based on Vp matrix,
# see predict.survPen)
par(mfrow=c(1,1))
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plot(new.time,pred1$haz,type="l",ylim=c(0,0.2),main="hazard vs excess hazard",
xlab="time since diagnosis (years)",ylab="hazard")
lines(new.time,pred3$haz,col="green3")
legend("topright",legend=c("overall","excess"),col=c("black","green3"),lty=c(1,1))

lines(new.time,pred1$haz.inf,lty=2)
lines(new.time,pred1$haz.sup,lty=2)

lines(new.time,pred3$haz.inf,lty=2,col="green3")
lines(new.time,pred3$haz.sup,lty=2,col="green3")

#-------------------------------------------------------- example 3

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# models: tensor product smooth vs tensor product interaction of time since diagnosis and
# age at diagnosis. Smoothing parameters are estimated via LAML maximization
f2 <- ~tensor(fu,age,df=c(5,5))

f3 <- ~tint(fu,df=5)+tint(age,df=5)+tint(fu,age,df=c(5,5))

# hazard model
mod4 <- survPen(f2,data=datCancer,t1=fu,event=dead)
summary(mod4)

mod5 <- survPen(f3,data=datCancer,t1=fu,event=dead)
summary(mod5)

# predictions
new.age <- seq(50,90,length=50)
new.time <- seq(0,7,length=50)

Z4 <- outer(new.time,new.age,function(t,a) predict(mod4,data.frame(fu=t,age=a))$haz)
Z5 <- outer(new.time,new.age,function(t,a) predict(mod5,data.frame(fu=t,age=a))$haz)

# color settings
col.pal <- colorRampPalette(c("white", "red"))
colors <- col.pal(100)

facet <- function(z){

facet.center <- (z[-1, -1] + z[-1, -ncol(z)] + z[-nrow(z), -1] + z[-nrow(z), -ncol(z)])/4
cut(facet.center, 100)

}

# plot the hazard surfaces for both models
par(mfrow=c(1,2))
persp(new.time,new.age,Z4,col=colors[facet(Z4)],main="tensor",theta=30,
xlab="time since diagnosis",ylab="age at diagnosis",zlab="excess hazard",ticktype="detailed")
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persp(new.time,new.age,Z5,col=colors[facet(Z5)],main="tint",theta=30,
xlab="time since diagnosis",ylab="age at diagnosis",zlab="excess hazard",ticktype="detailed")

#-------------------------------------------------------- example 4

library(survPen)
data(datCancer) # simulated dataset with 2000 individuals diagnosed with cervical cancer

# model : tensor product spline for time, age and yod (year of diagnosis)
# yod is not centered here since it does not create unstability but be careful in practice
# and consider centering your covariates if you encounter convergence issues
f4 <- ~tensor(fu,age,yod,df=c(5,5,5))

# excess hazard model
mod6 <- survPen(f4,data=datCancer,t1=fu,event=dead,expected=rate)
summary(mod6)

# predictions of the surfaces for ages 50, 60, 70 and 80
new.year <- seq(1990,2010,length=30)
new.time <- seq(0,5,length=50)

Z_50 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=50))$haz)
Z_60 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=60))$haz)
Z_70 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=70))$haz)
Z_80 <- outer(new.time,new.year,function(t,y) predict(mod6,data.frame(fu=t,yod=y,age=80))$haz)

# plot the hazard surfaces for a given age
par(mfrow=c(2,2))
persp(new.time,new.year,Z_50,col=colors[facet(Z_50)],main="age 50",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.year,Z_60,col=colors[facet(Z_60)],main="age 60",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.year,Z_70,col=colors[facet(Z_70)],main="age 70",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")
persp(new.time,new.year,Z_80,col=colors[facet(Z_80)],main="age 80",theta=20,
xlab="time since diagnosis",ylab="yod",zlab="excess hazard",ticktype="detailed")

########################################

survPen.fit (Excess) hazard model with multidimensional penalized splines for
given smoothing parameters
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Description

Fits an (excess) hazard model. If penalized splines are present, the smoothing parameters are spec-
ified.

Usage

survPen.fit(
build,
data,
formula,
max.it.beta = 200,
beta.ini = NULL,
detail.beta = FALSE,
method = "LAML",
tol.beta = 1e-04

)

Arguments

build list of objects returned by model.cons

data an optional data frame containing the variables in the model

formula formula object specifying the model

max.it.beta maximum number of iterations to reach convergence in the regression parame-
ters; default is 200

beta.ini vector of initial regression parameters; default is NULL, in which case the first
beta will be log(sum(event)/sum(t1)) and the others will be zero (except if
there are "by" variables or if there is a piecewise constant hazard specification
in which cases all betas are set to zero)

detail.beta if TRUE, details concerning the optimization process in the regression parame-
ters are displayed; default is FALSE

method criterion used to select the smoothing parameters. Should be "LAML" or "LCV";
default is "LAML"

tol.beta convergence tolerance for regression parameters; default is 1e-04. See NR.beta
for details

Value

Object of class "survPen" (see survPenObject for details)

Examples

library(survPen)

# standard spline of time with 4 knots

data <- data.frame(time=seq(0,5,length=100),event=1,t0=0)
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form <- ~ smf(time,knots=c(0,1,3,5))

t1 <- eval(substitute(time), data)
t0 <- eval(substitute(t0), data)
event <- eval(substitute(event), data)

# Setting up the model before fitting
model.c <- model.cons(form,lambda=0,data.spec=data,t1=t1,t1.name="time",
t0=rep(0,100),t0.name="t0",event=event,event.name="event",
expected=NULL,expected.name=NULL,type="overall",n.legendre=20,
cl="survPen(form,data,t1=time,event=event)",beta.ini=NULL)

# fitting
mod <- survPen.fit(model.c,data,form)

survPenObject Fitted survPen object

Description

A fitted survPen object returned by function survPen and of class "survPen". Method functions
predict and summary are available for this class.

Value

A survPen object has the following elements:

call original survPen call

formula formula object specifying the model

t0.name name of the vector of origin times

t1.name name of the vector of follow-up times

event.name name of the vector of right-censoring indicators

expected.name name of the vector of expected hazard

haz fitted hazard

coefficients estimated regression parameters. Unpenalized parameters are first, followed by
the penalized ones

type "net" for net survival estimation with penalized excess hazard model or "overall"
for overall survival with penalized hazard model

df.para degrees of freedom associated with fully parametric terms (unpenalized)

df.smooth degrees of freedom associated with penalized terms

p number of regression parameters

edf effective degrees of freedom

edf1 alternative effective degrees of freedom ; used as an upper bound for edf2
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edf2 effective degrees of freedom corrected for smoothing parameter uncertainty

aic Akaike information criterion with number of parameters replaced by edf when
there are penalized terms. Corresponds to 2*edf - 2*ll.unpen

aic2 Akaike information criterion corrected for smoothing parameter uncertainty.
Be careful though, this is still a work in progress, especially when one of the
smoothing parameters tends to infinity.

iter.beta vector of numbers of iterations needed to estimate the regression parameters for
each smoothing parameters trial. It thus contains iter.rho+1 elements.

X design matrix of the model

S penalty matrix of the model

S.scale vector of rescaling factors for the penalty matrices

S.list Equivalent to pen but with every element multiplied by its associated smoothing
parameter

S.smf List of penalty matrices associated with all "smf" calls

S.tensor List of penalty matrices associated with all "tensor" calls

S.tint List of penalty matrices associated with all "tint" calls

S.rd List of penalty matrices associated with all "rd" calls
smooth.name.smf

List of names for the "smf" calls associated with S.smf
smooth.name.tensor

List of names for the "tensor" calls associated with S.tensor
smooth.name.tint

List of names for the "tint" calls associated with S.tint

smooth.name.rd List of names for the "rd" calls associated with S.rd

S.pen List of all the rescaled penalty matrices redimensioned to df.tot size. Every
element of S.pen noted S.pen[[i]] is made from a penalty matrix pen[[i]]
returned by smooth.cons and is multiplied by S.scale

grad.unpen.beta

gradient vector of the log-likelihood with respect to the regression parameters

grad.beta gradient vector of the penalized log-likelihood with respect to the regression
parameters

Hess.unpen.beta

hessian of the log-likelihood with respect to the regression parameters

Hess.beta hessian of the penalized log-likelihood with respect to the regression parameters
Hess.beta.modif

if TRUE, the hessian of the penalized log-likelihood has been perturbed at con-
vergence

ll.unpen log-likelihood at convergence

ll.pen penalized log-likelihood at convergence

deriv.rho.beta transpose of the Jacobian of beta with respect to the log smoothing parameters
deriv.rho.inv.Hess.beta

list containing the derivatives of the inverse of Hess with respect to the log
smoothing parameters
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deriv.rho.Hess.unpen.beta

list containing the derivatives of Hess.unpen with respect to the log smoothing
parameters

lambda estimated or given smoothing parameters
nb.smooth number of smoothing parameters
iter.rho number of iterations needed to estimate the smoothing parameters
optim.rho identify whether the smoothing parameters were estimated or not; 1 when exit-

ing the function NR.rho; default is NULL
method criterion used for smoothing parameter estimation
criterion.val value of the criterion used for smoothing parameter estimation at convergence
LCV Likelihood cross-validation criterion at convergence
LAML negative Laplace approximate marginal likelihood at convergence
grad.rho gradient vector of criterion with respect to the log smoothing parameters
Hess.rho hessian matrix of criterion with respect to the log smoothing parameters
inv.Hess.rho inverse of Hess.rho
Hess.rho.modif if TRUE, the hessian of LCV or LAML has been perturbed at convergence
Ve Frequentist covariance matrix
Vp Bayesian covariance matrix
Vc Bayesian covariance matrix corrected for smoothing parameter uncertainty (see

Wood et al. 2016)
Vc.approx Kass and Steffey approximation of Vc (see Wood et al. 2016)
Z.smf List of matrices that represents the sum-to-zero constraint to apply for smf

splines
Z.tensor List of matrices that represents the sum-to-zero constraint to apply for tensor

splines
Z.tint List of matrices that represents the sum-to-zero constraint to apply for tint

splines
list.smf List of all smf.smooth.spec objects contained in the model
list.tensor List of all tensor.smooth.spec objects contained in the model
list.tint List of all tint.smooth.spec objects contained in the model
list.rd List of all rd.smooth.spec objects contained in the model
U.F Eigen vectors of S.F, useful for the initial reparameterization to separate penal-

ized ad unpenalized subvectors. Allows stable evaluation of the log determinant
of S and its derivatives

is.pwcst TRUE if there is a piecewise constant (excess) hazard specification. In that case
the cumulative hazard can be derived without Gauss-Legendre quadrature

pwcst.breaks if is.pwcst is TRUE, vector of breaks defining the sub-intervals on which the
hazard is constant. Otherwise NULL.

factor.structure

List containing the levels and classes of all factor variables present in the data
frame used for fitting

converged convergence indicator, TRUE or FALSE. TRUE if Hess.beta.modif=FALSE and
Hess.rho.modif=FALSE (or NULL)
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tensor.in tensor model matrix for two marginal bases

Description

Function called recursively inside tensor.prod.X.

Usage

tensor.in(X1, X2)

Arguments

X1 first marginal design matrix with n rows and p1 columns

X2 first marginal design matrix with n rows and p2 columns

Value

Matrix of dimensions n*(p1*p2) representing the row tensor product of the matrices X1 and X2

Examples

library(survPen)

# row-wise tensor product between two design matrices
set.seed(15)

X1 <- matrix(rnorm(10*3),nrow=10,ncol=3)
X2 <- matrix(rnorm(10*2),nrow=10,ncol=2)
tensor.in(X1,X2)
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tensor.prod.S Tensor product for penalty matrices

Description

Computes the penalty matrices of a tensor product smooth from the marginal penalty matrices. The
code is from function tensor.prod.penalties in mgcv package.

Usage

tensor.prod.S(S)

Arguments

S list of m marginal penalty matrices

Value

TS List of the penalty matrices associated with the tensor product smooth

Examples

library(survPen)

# tensor product between three penalty matrices
set.seed(15)

S1 <- matrix(rnorm(3*3),nrow=3,ncol=3)
S2 <- matrix(rnorm(2*2),nrow=2,ncol=2)

S1 <- 0.5*(S1 + t(S1) ) ; S2 <- 0.5*(S2 + t(S2) )

tensor.prod.S(list(S1,S2))

tensor.prod.X tensor model matrix

Description

Computes the model matrix of tensor product smooth from the marginal bases.

Usage

tensor.prod.X(X)
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Arguments

X list of m design matrices with n rows and p1, p2, ... pm columns respectively

Value

T Matrix of dimensions n*(p1*p2*...*pm) representing the row tensor product of
the matrices in X

Examples

library(survPen)

# row-wise tensor product between three design matrices
set.seed(15)

X1 <- matrix(rnorm(10*3),nrow=10,ncol=3)
X2 <- matrix(rnorm(10*2),nrow=10,ncol=2)
X3 <- matrix(rnorm(10*2),nrow=10,ncol=2)
tensor.prod.X(list(X1,X2,X3))

%cross% Matrix cross-multiplication between two matrices

Description

Matrix cross-multiplication between two matrices

Usage

Mat1 %cross% Mat2

Arguments

Mat1 a matrix.

Mat2 another matrix.

Value

prod the product t(Mat1)



52 %vec%

%mult% Matrix multiplication between two matrices

Description

Matrix multiplication between two matrices

Usage

Mat1 %mult% Mat2

Arguments

Mat1 a matrix.

Mat2 another matrix.

Value

prod the product Mat1

%vec% Matrix multiplication between a matrix and a vector

Description

Matrix multiplication between a matrix and a vector

Usage

Mat %vec% vec

Arguments

Mat a matrix.

vec a vector.

Value

prod the product Mat
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